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SUMMARY  31 

Earth has experienced glacial/interglacial oscillations accompanied by changes in atmospheric CO2 32 

throughout much of its history. Today over 15 million square kilometers of Earth’s land surface is 33 

covered in ice including glaciers, ice caps, and the ice sheets. Glaciers are teeming with life and 34 

supraglacial snow and ice surfaces are often darkened by the presence of photoautotrophic snow algae, 35 

resulting in accelerated melt due to lowered albedo. Few studies report the productivity of snow algae 36 

communities and the parameters which constrain their growth on supraglacial surfaces—key factors for 37 

quantifying biologically induced albedo effects (bio-albedo). We demonstrate snow algae primary 38 

productivity is stimulated by the addition of inorganic carbon. Our results indicate a positive feedback 39 

between increasing CO2 and snow algal primary productivity, underscoring the need for robust climate 40 

models of past and present glacial/interglacial oscillations to include feedbacks between supraglacial 41 

primary productivity, albedo, and atmospheric CO2.  42 
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MAIN BODY 43 

 Earth has experienced intervals of glacial and interglacial periods in its history including 44 

Snowball Earth events (Hoffman et al., 1998; Rasmussen et al., 2013). Today, glaciers and ice sheets are 45 

integral to Earth’s climate and hydrological system—they influence regional and global climate, are 46 

sensitive to climate change, and are the largest freshwater reservoir on Earth (Clark et al., 1999; Edwards 47 

et al., 2014). Geologic and geochemical evidence suggest glacial/interglacial oscillations are coincident 48 

with lower atmospheric CO2 (Sigman and Boyle, 2000) and exacerbated by lower solar luminosity 49 

(Gough, 1981). For instance, models indicate overcoming high planetary albedo during Snowball Earth 50 

events required greenhouse warming caused by the accumulation of high levels of CO2 from volcanic 51 

outgassing accompanied by decreases in silicate weathering (Caldeira and Kasting, 1992; Allen and 52 

Etienne, 2008). Due to human activity, atmospheric CO2 is now above 400 ppm (Waters et al., 2016) and 53 

from 1999 to 2010, CO2 was emitted at a rate 100 times as fast as during the last glacial termination 54 

(Wolff, 1999). Coincident with increasing CO2, average global temperatures have increased (~1°C over 55 

the past century) leading to glacial retreat and receding snowpack.  56 

 Glaciers and ice sheets are host to diverse ecosystems including supraglacial communities that 57 

contribute to local and global biogeochemical cycles (Anesio et al., 2012). Snow algae (eukaryotic 58 

photoautotrophs) are key primary producers on supraglacial habitats in the Arctic and on glaciers and 59 

snowfields throughout the world where they thrive in high-irradiation environments (Morgan-Kiss et al., 60 

2006; Boetius et al., 2015). To overcome this high irradiance, snow algae produce secondary carotenoids 61 

resulting in blooms of red algal biomass (Remias et al., 2005), which darkens snow and ice surfaces. In 62 

Sierra Nevada snowfields, snow algae abundance was negatively correlated to surface albedo (Thomas 63 

and Duval, 1995). Similarly, in the Arctic, red algal blooms darken the snow/ice surface lowering surface 64 

albedo by as much as 13% over the melt season (Lutz et al., 2016) and increasing melt rates (Musilova et 65 

al., 2016; Cook et al., 2017).  66 

 Allochthonous material delivered to snow and ice surfaces such as forest fire-derived black 67 

carbon, Saharan or pro-glacial mineral dust, volcanic ash, and anthropogenic pollution causes increased 68 
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absorption of solar radiation and locally accelerated melting. These effects can be far reaching—a 69 

darkening of the Greenland ice sheet has been observed coincident with increased melt (Tedesco et al., 70 

2016). While the effects of inorganic material on albedo have been quantified, climate models have not 71 

traditionally accounted for melting caused by snow algae (Lutz et al., 2016). These efforts are 72 

complicated by the difficulty in separating abiotic albedo from biologically induced darkening, or bio-73 

albedo, as well as a paucity of data on snow algae distribution and density. However, a recently developed 74 

spectral model for bio-albedo indicates algal blooms can influence snowpack albedo and melt rate (Cook 75 

et al., 2017). The model indicated algae biomass has a greater effect than pigment concentration, 76 

suggesting a positive correlation between supraglacial algal blooms and accelerated melt. 77 

 Understanding both geologic glacial/interglacial oscillations and predicting future climate 78 

requires integrating climate models, carbon cycling, and planetary albedo. Algal clades, including green 79 

algae, evolved prior to Neoproterozoic glaciations (Knoll, 1992). Thus, the cosmopolitan nature of snow 80 

algae and their widespread distribution on snowpacks worldwide (Hisakawa et al., 2015) facilitates their 81 

inclusion in these models across space and time. Snow algae are now recognized as a key component 82 

driving melting yet the role of increasing CO2 on snow algae primary productivity (a proxy for growth), 83 

and thus albedo, remains unconstrained. Here we examined community composition and primary 84 

productivity (carbon fixation rates) of snow algae communities on supraglacial snowfields on glaciers on 85 

stratovolcanoes in the Pacific Northwest. We targeted Gotchen Glacier on Mt. Adams, Eliot Glacier on 86 

Mt. Hood, and Collier Glacier on North Sister (Fig. 1; Table S1) where our previous data suggested 87 

photoautotrophic snow algae could be inorganic carbon-limited (Hamilton and Havig, 2017).  88 

Stratovolcano supraglacial microbial community composition    89 

 Snow algae assemblages were comprised predominantly of eukaryotic 18S rRNA gene sequences 90 

affiliated with Chlamydomonas spp. and Chloromonas spp. within the Chlorophyta (green algae)(Fig. 1). 91 

OTUs affiliated with strains of Chlamydomonas nivalis were abundant in supraglacial snow from 92 

Gotchen and Eliot Glaciers whereas OTUs affiliated with a Chloromonas spp. were the most abundant in 93 

the Collier Glacier snow sample. The sequences recovered are similar to those recovered from the Arctic, 94 
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further indicating snow algae are cosmopolitan (Lutz et al., 2016). Bacterial OTUs most closely related to 95 

Chitinophagaceae, Cytophagaceae, and Sphingobacteriaceae were abundant in snow algae samples from 96 

the three glaciers (Fig. 1). The recovery of these bacteria is consistent with previous studies of 97 

supraglacial snow (Boetius et al., 2015; Lutz et al., 2016; Hamilton and Havig, 2017) and highlights a 98 

role for these populations in degradation of complex organic carbon on the glacial surface. 99 

Stratovolcano snow algae primary productivity 100 

 Carbon fixation rates were examined in a series of microcosms in supraglacial snow over a range 101 

of dissolved inorganic carbon (DIC) concentrations (50 µM to 1 mM NaH13CO3) where natural DIC 102 

concentration in snow samples ranged from 9 to 23 µM. At all sites, an increase in light-dependent carbon 103 

fixation was observed with increasing concentration of (DIC) concentration (Fig. 2). In microcosms 104 

amended with 50 µM NaH13CO3 (Fig. 2; Table S1), rates of carbon assimilation ranged from ~17 µg C/g 105 

Cbiomass/hr in supraglacial snow algae from Eliot Glacier to ~42 µg C/g Cbiomass/hr at Collier Glacier. 106 

Microcosms amended with 500 µM or 1 mM NaH13CO3 incorporated significantly more carbon than 107 

assays amended with 50 µM or 100 µM NaH13CO3 (Fig. 2; Table 1). This effect was particularly 108 

pronounced at Eliot and Gotchen Glaciers where rates increased 77-108% in the presence of elevated 109 

NaH13CO3 (50 µM vs. 1 mM). The increase in carbon assimilation rates at Collier Glacier between 50-100 110 

µM NaH13CO3 and 500 to 1mm µM NaH13CO3 was ~20-25%. 111 

Implications for future and past climate models 112 

  Our data indicate snow algae primary productivity is stimulated by the addition of CO2. 113 

Assuming carbon fixation is a proxy for growth, increased primary productivity would be correlated with 114 

lower albedo and increased melt. This positive feedback suggests increasing atmospheric CO2 115 

concentration will drive increased primary productivity, accelerating glacial retreat, especially for 116 

mountain glaciers that are particularly susceptible to climate change. Our data support recent interest in 117 

quantifying the effects of bio-albedo and underscore the need for integrating algal–albedo interactions and 118 

variable (increasing) CO2 in models aimed at interpreting Earth’s past glacial/interglacial oscillations as 119 

well as current and future climate models.  120 
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FIGURE LEGENDS 134 

Figure 1. Map of sampling site locations and composition of small subunit 16S and 18S rRNA gene 135 

sequences. OTUs for each library were binned at the Family level.  136 

 137 

Figure 2. Box-Whisker plots of carbon assimilation rates by supraglacial communities. The horizontal 138 

line in each box indicates the median and closed circles represent the mean (n=3 for each treatment). Dark 139 

treatments were amended with 100 µM NaH13CO3.  140 
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Figure 1. Map of sampling site locations and composition of small subunit 16S and 18S rRNA gene 

sequences. OTUs for each library were binned at the Family level.
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Figure 2. Box-Whisker plots of carbon assimilation rates by supraglacial communities. The horizontal 

line in each box indicates the median and closed circles represent the mean (n=3 for each treatment). Dark 

treatments were amended with 100 µM NaH13CO3.
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